Page 2 of 4

The BP Cover-Up

BP and the government say the spill is fast disappearing—but dramatic new science reveals that its worst effects may be yet to come.

Bird Rescue Workers Bird rescue workers examine a dead juvenile roseate spoonbill in Fort Jackson, Louisiana.

SIX WEEKS AFTER THE Deepwater Horizon explosion, I'm aboard a small inflatable Greenpeace boat, bucking the marshy waters of Barataria Bay, Louisiana. A tide change is under way. Incoming and outgoing waters are flowing in opposing directions, battling each other in current lines inked with oil. A continuous flow of vessels chug through the pass—tugboats, barges, mud boats, seiners, trawlers, pirogues, airboats, sportfishers, pleasure cruisers. Some carry crews to and from the thousands of other drilling platforms puncturing the seafloor of the Gulf of Mexico, but the majority are now laden with containment boom and BP cleanup crews.

Dolphins are swimming in the pass too, a few dozen of an estimated 138 to 238 bottlenose dolphins that call Barataria Bay home. They're hugging the greasy waves of the tidal rip. Like bottlenose dolphins the world over, and like much marine life in general, they're exploiting the edge where waters of different provenance (temperature, salinity, velocity) hide predators from prey and vice versa. Along these edges, the sensory systems of the sea—sight, sound, pressure wave, magnetic field—are dimmed or distorted, making it difficult to see from one side through to the other. Bottlenose dolphins use the distortions as natural hunting blinds.

These waters have been off-limits to human fishers for weeks. But nobody told the dolphins. They're actively fishing the tidal rip and following trawlers dragging boom, because these are the same boats that sometimes give them food in the form of bycatch thrown overboard.

"Oil is toxic to most life. And Corexit is toxic to most life. But the most toxic of all is oil that's been treated with Corexit."

As best we know, the dolphins of Barataria Bay comprise a closed population whose members rarely if ever leave the bay. In theory, they could now exit, but in all likelihood they're trapped here by multiple barriers: by oily waters, by seasonal tradition, by cultural habit, by territorial boundaries, and by the availability of food—including fish and other marine life that may be trying to escape the oil by swimming inshore. At the moment, the dolphins are feeding as best they can in home waters that will likely kill them.

Rick Steiner, a conservation specialist from the University of Alaska who's studied the effects of the Exxon Valdez spill for the past 21 years, discusses these possibilities as we look on helplessly. "The dolphins aspirate oily fumes through their blowholes," he says. "They're eating fish exposed to oil. They're getting oil in all their orifices. They're bathed in a continual soup of oil. There's nowhere to go to get away from it. We know from the Exxon Valdez that even those animals not killed outright suffer lesions in their organs, including the brain. They go blind. They experience reproductive failures, changes in their blood chemistry, and possibly multigenerational changes passed down to offspring never even exposed to the oil."

A few hundred yards away, tucked into the marsh grass on Grand Isle State Park, we see a dead dolphin, half-skeletonized, half-mummified. In the heat and humidity of coastal Louisiana, it is hard to tell if it'd been dead a week or a month. We do know that dead dolphins are washing up along the Gulf Coast in higher-than-normal numbers. We don't know how many more have died at sea and sunk, never to be counted. On the beach surrounding the dead dolphin are hundreds of hermit crabs coated with a chocolatey syrup of oil, their tracks up the beach splattered as they fled the foul waters. The oil washing ashore is still actively bubbling. "Even though this concoction may have exploded from the well a month ago and has been wending its way ashore ever since, it's still full of volatile compounds like benzene," says Steiner. "Benzene's a known carcinogen, dangerous to human life, too."

Barataria Bay has become a hospice wilderness, full of dying plants and animals. Nearly all the marshy islands are oiled. The oyster beds covering 10 percent of the bay (pdf) are dead or dying and now closed to human harvesting. The post-larval brown shrimp (pdf) migrating into the bay (the estuaries of Louisiana and Texas are home to the highest densities of brown shrimp in US waters) are running an oily gauntlet. So are the speckled trout that normally feast on brown shrimp during their own breeding season. For the first time in my bird-watching life, I've seen multitudes of clapper rails—notoriously secretive marsh-dwelling birds—running down levees and roads in broad daylight trying to escape the oiled wetlands.

The fate of the marshes is inextricably linked to the fate of the deep ocean—and vice versa. The deep ocean seeds the marshes with the larvae of fish and invertebrates, which then repopulate the deep in their juvenile or adult stages. These inshore-offshore migrators include ecologically and commercially important species. Fifty percent of the wetlands in the lower 48 states line the Gulf of Mexico and produce more seafood than the Chesapeake Bay, South and Mid-Atlantic, and New England fisheries combined. Endangered Atlantic bluefin tuna, scheduled to spawn right now in the waters around the Deepwater Horizon blowout, migrate here because the Gulf's marshes—the ocean's womb—likely shelter and feed their larvae. Adult bluefin, deep divers, are hunting the depths to 3,300 feet (pdf) in search of squid and crustaceans in the deep scattering layer. BP's oil will wallop them at all stages of their lives.

At Queen Bess Island, an important seabird rookery near the mouth of Barataria Bay, Steiner and I watch oily brown pelicans trying to preen themselves clean. I visited this same island a week ago; the downy pelican chicks who were still in the nest then are today slipping on oily rocks at the waterline. Where last week there were still a few dozen white pelicans, now there are only two, standing uncharacteristically alone, wings drooping in stress. Steiner points out the pelicans flying overhead, their bellies coated with oil. "Even those birds who are managing to avoid diving into contaminated water to feed are inadvertently floating on it," he says.

Dolphin carcass A dolphin carcass in Port Fourchon, Louisiana.

Death by oil is a horrible way to go. Necropsies on birds reveal hypothermia resulting from oiled feathers, malnutrition resulting from the hypothermia, anemia from the shock and stress of hunger, and poisoning from the oil ingested and inhaled during preening. Although a few birds will escape the immediate lethal effects, their eggs and chicks will not. An experiment from the 1980s with nesting Leach's storm-petrels—tiny seafaring birds breeding on islands off Newfoundland—found that birds exposed to crude oil or Corexit (the dispersant BP is using in the Gulf) lost more eggs and chicks than did control birds. This, even though the oil exposure was sublethal, and even if only one adult of the pair was oiled. Breeding success for adults generally returned to normal the following year—except in the case of birds exposed to the highest sublethal doses of oil or Corexit. Fewer of those birds returned to breed—indicating that their part in the experiment had proved lethal after all.

As bad as it is in Barataria Bay, it's only the beginning.

FROM THE OUTSET, BP has fought to control every aspect of its uncontrollable catastrophe other than the spill itself. It has wildly spun the numbers on the quantity of hemorrhaging oil. It has continued to dispense Corexit—above and below water—when ordered to stop. It has restricted press access with Kafkaesque flair. Unable or unwilling to skim much oil, BP has poured its energies into skimming up all available resources: renting virtually every hotel room on the Louisiana shores, helping to keep the press at bay; buying the silence of scientists with lucrative pay and confidentiality clauses; chartering nearly every boat on the coast and employing virtually every fisherman and captain made jobless by the spill. I find clusters of these men in the marshes and out in the Gulf, their boats tethered together so they can watch movies on the biggest boat's DVD player.

"They have to pay these guys to work or else they'll riot," says Carl Safina, marine conservationist and cofounder of the Blue Ocean Institute. "As it is, they're angry, drinking, griping in the bars. By paying them, BP is deflecting their anger. Plus some of them feel like they're really helping, even though BP's two prime cleanup methods—setting out boom and using dispersant—completely undermine each other."

The containment and absorbent boom that BP is deploying around beaches and marshes—largely ineffectively—is designed to do just that: contain and absorb oil. But the Corexit dispersant BP has flooded onto the leaking wellhead 5,000 feet down, and sprayed from the air onto the surface—some 2 million gallons in total—is designed to break up the oil. "Which one is it?" asks Safina. "Do you want to contain it or disperse it? It makes absolutely no sense to be doing both. Let's face it, with pollution, you count your lucky stars if you have what's called point-source pollution, that is, a single identifiable localized source of pollution, like the Deepwater Horizon. So what's BP doing with that? They're turning it into the worst pollution nightmare of them all: non-point-source pollution."

Cajun oysterman Flip Tayamen shows his nets clotted with the crude oil washing into Barataria Bay.

That's because untreated oil quickly rises to the surface, where it can be skimmed with relative ease. But treated with dispersant, it becomes a submerged plume, unlikely to ever float to the surface, and destined to migrate through underwater currents to the entire Gulf basin and eventually the North Atlantic. "Oil is toxic to most life," says Steiner. "And Corexit is toxic to most life. But the most toxic of all is oil that's been treated with Corexit. Plus, dispersants may well kill the ocean's first line of defense against oil: the natural microbes that break oil down for other microbes to eat." The EPA has never seriously examined Corexit's effects on marine life (see "Bad Breakup"). Now it'll get the biggest and baddest field experiment of all time, as the flora and fauna of the shallows and the deep scattering layer collide with the dispersed plumes.

BP's schizophrenic approach to the cleanup becomes more insidious in light of the company's legal liabilities: The Clean Water Act stipulates that BP must pay $1,100 for every barrel of oil proven to have been spilled—$4,300 per barrel if gross negligence is determined. But the use of dispersants clouds estimates of the spill's size, guaranteeing that the true number will never be known—since relatively little oil will ever wash ashore—and guaranteeing that BP's liability will be vastly underestimated.

Consider that while we've all been fixated on the true spill rate—is it 35,000 barrels a day? 60,000 barrels? More?—those figures are only estimates, and only of the oil. Few people realize that some 40 percent of what spews from the Deepwater Horizon well is methane, the primary component of natural gas—a dangerous greenhouse gas and a toxin to most life. Indeed, methane may hold the answer to the quantity of vented oil. David Valentine, a biogeochemist at the University of California-Santa Barbara, suggested in May in an op-ed (pdf) in the journal Nature that plumes of dissolved methane could be used to calculate how much oil has leaked into the Gulf of Mexico. But BP has blurred the evidence trail—intentionally or otherwise—by treating at least some of the escaping methane with methanol, another toxin, in an effort to prevent a dangerous buildup and possibly even another explosion. Nevertheless, around the spill site, Valentine and his colleagues found clouds of dissolved natural gas at 100,000 times the normal density and at depths of more than 2,500 feet. They also found that little of the gas seemed to be reaching the air. Which is good news for the atmosphere, but probably bad news for the ocean. That's because the methane may also be powering up blooms of microbes that eat methane but use up the oxygen in the water as they do so—causing dead zones where most life cannot survive. The Gulf of Mexico is already home to the second-largest dead zone on Earth; the last thing it needs is another. On the surface above the methane clouds, Valentine and colleagues discovered a mass kill of pyrosomes—free-floating colonies of jellyfish look-alikes that straddle the vertebrate-invertebrate divide, and an important food for sea turtles. It's not yet clear which of many smoking guns killed the pyrosomes. "We'll be working up the story of the relationship between dispersant, oil, gas, and the microbial community for some time to come," says Valentine.

Page 2 of 4