Page 2 of 4

Injection Wells: The Poison Beneath Us

How we're putting toxic waste underground—right where it can contaminate our groundwater.

| Tue Jun. 26, 2012 6:00 AM EDT

Before issuing the permit, commission officials studied mathematical models showing that waste could be safely injected into a sandstone layer about one-third of a mile beneath the farm. They specified how much waste could go into the well, under how much pressure, and calculated how far it would dissipate underground. As federal law requires, they also reviewed a quarter-mile radius around the site to make sure waste would not seep back toward the surface through abandoned wells or other holes in the area.

Yet the precautions failed. "Salt water" brine migrated from the injection site and shot back to the surface through three old well holes nearby.

"Have you ever seen an artesian well?" recalled Cowley, Chico's director of public works. "It was just water flowing up out of the ground."

Despite residents' fears that the injected waste could be making its way toward their drinking water, commission officials did not sample soil or water near the leak.

"It's kind of like Whac-a-Mole, where one thing pops up and by the time you go to hit it, another thing comes up."

If the injection well waste "had threatened harm to the ground water in the area, an in-depth RRC investigation would have been initiated," Ramona Nye, a spokeswoman for Texas' Railroad Commission, wrote in an email.

The agency disputes Cowley's description of a pool of brine or of dead trees, saying that the waste barely spilled beyond the overflowing wells, though officials could not identify any documents or staffers who contradicted Cowley's recollections. Accounts similar to Cowley's appeared in an article about the leak in the Wise County Messenger, a local newspaper. The agency has destroyed its records about the incident, saying it is required to keep them for only two years.

After the breach, the commission ordered two of the old wells to be plugged with cement and restricted the rate at which waste could be injected into the well. It did not issue any violations against the disposal company, which had followed Texas' rules, regulators said. The commission allowed the well operator to continue injecting thousands of barrels of brine into the well each day. A few months later, brine began spurting out of three more old wells nearby.

"It's kind of like Whac-a-Mole, where one thing pops up and by the time you go to hit it, another thing comes up," Cowley said. "It was frustrating…If your water goes, what does that do to the value of your land?"

Deep well injection takes place in 32 states, from Pennsylvania to Michigan to California. Most wells are around the Great Lakes and in areas where oil and gas is produced: along the Appalachian crest and the Gulf Coast, in California and in Texas, which has more wells for hazardous industrial waste and oil and gas waste than any other state.

Federal rules divide wells into six classes based on the material they hold and the industry that produced it. Class 1 wells handle the most hazardous materials, including fertilizers, acids, and deadly compounds such as asbestos, PCBs, and cyanide. The energy industry has its own category, Class 2, which includes disposal wells and wells in which fluids are injected to force out trapped oil and gas. The most common wells, called Class 5, are a sort of catch-all for everything left over from the other categories, including storm-water runoff from gas stations.

The EPA requires that Class 1 and 2 injection wells be drilled the deepest to assure that the most toxic waste is pushed far below drinking water aquifers. Both types of wells are supposed to be walled with multiple layers of steel tubing and cement and regularly monitored for cracks.

Officials' confidence in this manner of disposal stems not only from safety precautions, but from an understanding of how rock formations trap fluid.

Underground waste, officials say, is contained by layer after layer of impermeable rock. If one layer leaks, the next blocks the waste from spreading before it reaches groundwater. The laws of physics and fluid dynamics should ensure that the waste can't spread far and is diluted as it goes.

The layering "is a very strong phenomenon and it's on our side," said Susan Hovorka, a senior research scientist at the University of Texas-Austin's Bureau of Economic Geology.

According to risk analyses cited in EPA documents, a significant well leak that leads to water contamination is highly unlikely—on the order of one in a million.

Once waste is underground, though, there are few ways to track how far it goes, how quickly or where it winds up. There is plenty of theory, but little data to prove the system works.

"I do think the risks are low, but it has never been adequately demonstrated," said John Apps, a leading geoscientist who advises the Department of Energy for Lawrence Berkeley National Labs. "Every statement is based on a collection of experts that offer you their opinions. Then you do a scientific analysis of their opinions and get some probability out of it. This is a wonderful way to go when you don't have any evidence one way or another…But it really doesn't mean anything scientifically."

The hard data that does exist comes from well inspections conducted by federal and state regulators, who can issue citations to operators for injecting illegally, for not maintaining wells, or for operating wells at unsafe pressures. This information is the EPA's primary means of tracking the system's health on a national scale.

Yet, in response to questions from ProPublica, the EPA acknowledged it has done very little with the data it collects. The agency could not provide ProPublica with a tally of how frequently wells fail or of how often disposal regulations are violated. It has not counted the number of cases of waste migration or contamination in more than 20 years. The agency often accepts reports from state injection regulators that are partly blank, contain conflicting figures, or are missing key details, ProPublica found.

[The EPA] often accepts reports from state injection regulators that are partly blank, contain conflicting figures, or are missing key details.

In 2007, the EPA launched a national data system to centralize reports on injection wells. As of September 2011—the last time the EPA issued a public update—less than half of the state and local regulatory agencies overseeing injection were contributing to the database. It contained complete information from only a handful of states, accounting for a small fraction of the deep wells in the country.

The EPA did not respond to questions seeking more detail about how it handles its data, or about how the agency judges whether its oversight is working.

In a 2008 interview with ProPublica, one EPA scientist acknowledged shortcomings in the way the agency oversees the injection program.

"It's assumed that the monitoring rules and requirements are in place and are protective—that's assumed," said Gregory Oberley, an EPA groundwater specialist who studies injection and water issues in the Rocky Mountain region. "You're not going to know what's going on until someone's well is contaminated and they are complaining about it."

***

ProPublica's analysis of case histories and EPA data from October 2007 to October 2010 showed that when an injection well fails, it is most often because of holes or cracks in the well structure itself.

Operators are required to do so-called "mechanical integrity" tests at regular intervals, yearly for Class 1 wells and at least once every five years for Class 2 wells. In 2010, the tests led to more than 7,500 violations nationally, with more than 2,300 wells failing. In Texas, one violation was issued for every three Class 2 wells examined in 2010.

Page 2 of 4
Get Mother Jones by Email - Free. Like what you're reading? Get the best of MoJo three times a week.