Page 2 of 4

What If We Never Run Out of Oil?

New technology and a little-known energy source suggest that fossil fuels may not be finite. This would be a miracle—and a nightmare.

| Fri May 3, 2013 5:00 AM EDT

Oil prices soared, as if on cue, after Laherrère and Campbell's prediction. By 2008, they had hit levels unseen since the Carter administration. "The supply of oil is limited," President George W. Bush declared that year, echoing his predecessor. "There is a growing consensus that the age of cheap oil is coming to an end," announced the British government's Energy Research Centre. "A peak of conventional oil production before 2030 appears likely and there is a significant risk of a peak before 2020." Bookstore shelves shudder beneath the avalanche of warnings: The Big Flatline: Oil and the No-Growth Economy. Peak Oil and the Second Great Depression (2010–2030). The End of Growth. The Crash Course. Peeking at Peak Oil. (All have come out in the past three years.)

McKelveyans remain undeterred. Morris Adelman is in failing health and could not speak to me, but I reached two of his students, Michael Lynch and Philip K. Verleger. Lynch, the president of the energy-consulting firm SEER, agreed with Laherrère that reserve estimates are sometimes manipulated for financial reasons—Shell's chairman resigned in 2004, after the company was caught misstating its reserves—but didn't think it mattered much. "Shell is still pumping oil," he said. "The peak-oil people always say, ‘Look at this super-technological rig—see how expensive the equipment is now.' I see it and think, Look at how good we've gotten at doing this." Lynch added, "The airlines have jettisoned their wooden biplanes and now use 747s. That's not because we're running out of sky and it's harder to fly. It's because the technology is getting better and increasing our reach."

More important, to Verleger's way of thinking, the peak-oil battle has become irrelevant. Verleger, a former economic official in the Ford and Carter administrations, is now a visiting fellow at the Peterson Institute for International Economics in Washington, D.C. Since Hubbert's time, the dispute has focused on "conventional" petroleum, the type found in regular oil wells, most of which is in the Middle East and controlled by OPEC. Production of conventional oil has indeed plateaued, as Hubbertians warned: OPEC's output has remained roughly flat since 2005. In part, the slowdown reflects the diminishing supply of this kind of oil. Another part is due to the global recession, which has stalled demand. But a third factor is that OPEC's conventional petroleum is being supplemented—and possibly supplanted—by what the industry calls "unconventional" petroleum, which for the moment mainly means oil and natural gas from fracking. Fracking, Verleger says, is creating "the biggest change in energy in almost 100 years—a revolution." That revolution, in his view, will have a big winner: the United States.

The argument is simple. The need to import expensive foreign oil has been a political and economic burden on the United States for decades. Today, though, fracking is unleashing torrents of oil in North Dakota and Texas—it may create a second boom in the San Joaquin Valley—and floods of natural gas in Pennsylvania, West Virginia, and Ohio. So bright are the fracking prospects that the U.S. may become, if only briefly, the world's top petroleum producer. ("Saudi America," crowed The Wall Street Journal. But the parallel is inexact, because the U.S. is likely to consume most of its bonanza at home, rather than exporting it.) Oil may cost more than in the past, but prices will surely stabilize. No more spikes! Still more important, this nation is fracking so much natural gas that its price today is less than a third of its price in Europe and Asia—a big cost advantage for American industry. As companies switch to cheap natural gas, a Citigroup report argued last year, the U.S. petroleum boom could add as much as 3.3 percent to America's GDP in the next seven years.

Fracking is creating "the biggest change in energy in almost 100 years—a revolution."

Until about 1970, the United States produced almost enough petroleum for its own needs. Then, just as Hubbert predicted, domestic oil production began to wane. Suddenly the United States was vulnerable. OPEC had launched an oil embargo in 1967, but it had next to no effect, because the U.S. produced so much of its own oil. Six years later, with U.S. imports surging, OPEC launched a second embargo. Oil prices quadrupled—and caused a massive panic, complete with fistfights at gas stations that were broadcast and rebroadcast on local TV news. "Energy independence!" was the new call from Washington. Perhaps the only ideal shared by Nixon, Carter, and Reagan, it became the holy grail of American politics. George W. Bush, flanked by Democrats, signed the Energy Independence and Security Act of 2007; Barack Obama, fighting with Republicans, has repeatedly touted the need to "get America closer to energy independence."

Largely because of little-noticed research by government agencies and small companies, that goal is within sight, says Leonardo Maugeri, a former director of the petrochemical division of the Italian energy firm Eni. The United States will still import oil, he argued last summer in a report from Harvard's Kennedy School of Government. But domestic production will increase so much that by 2020, all of this country's oil needs "theoretically could come entirely from the Western Hemisphere." Within a decade, in other words, the U.S. could, if it wanted, stop importing oil from the Middle East. In November, the International Energy Agency agreed, though it pushed the date of independence to 2035. The fracking-led oil-and-gas boom, Philip Verleger said in January, will lead to an American "economic Renaissance." The United States will at last escape the world made by Churchill, at least for a while.

Nations like Japan, China, and India will still be stuck in that world, as will much of Europe and Southeast Asia. Many of these nations do not have shale deposits to frack, the requisite technological base, or, even if they have both the shale and the technology, the entrepreneurial infrastructure to finance such sweeping changes. Nonetheless, they want to be freed from their abrasive reliance on OPEC. The United States and Canada, mindful that the good times will not last forever, are also hunting for new supplies. All have been looking with ever-increasing interest at a still-larger energy source: methane hydrate.

The land sheds organic molecules into the water like a ditchdigger taking a shower. Sewage plants, fertilizer-rich farms, dandruffy swimmers—all make their contribution. Plankton and other minute sea beings flourish where the drift is heaviest, at the continental margins. When these creatures die, as all living things must, their bodies drizzle slowly to the seafloor, creating banks of sediment, marine reliquaries that can be many feet deep. Microorganisms feed upon the remains.

In a process familiar to anyone who has seen bubbles coming to the surface of a pond, the microbes emit methane gas as they eat and grow. This undersea methane bubbles up too, but it quickly encounters the extremely cold water in the pores of the sediment. Under the high pressure of these cold depths, water and methane react to each other: water molecules link into crystalline lattices that trap methane molecules. A cubic foot of these lattices can contain as much as 180 cubic feet of methane gas.

Most methane hydrate, including the deposit Japan is examining in the Nankai Trough, is generated in this way. A few high-quality beds accumulate when regular natural gas, the kind made underground by geologic processes, leaks from the earth into the deep ocean. However methane hydrate is created, though, it looks much like everyday ice or snow. It isn't: ordinary ice cannot be set on fire. More technically, ice crystals are typically hexagonal, whereas methane-hydrate crystals are clusters of 12- or 14-sided structures that in scientists' diagrams look vaguely like soccer balls. Methane molecules rattle about inside the balls, unable to escape. The crystals don't dissolve in the sea like ordinary ice, because water pressure and temperature keep them stable at depths below about 1,000 feet. Scientists on the surface refer to them by many names: methane hydrate, of course, but also methane clathrate, gas hydrate, hydromethane, and methane ice.

The United States and Canada, mindful that the good times will not last forever, are also hunting for new supplies.

Estimates of the global supply of methane hydrate range from the equivalent of 100 times more than America's current annual energy consumption to 3 million times more. A tiny fraction—1 percent or less—is buried in permafrost around the Arctic Circle, mostly in Alaska, Canada, and Siberia. The rest is beneath the waves, a reservoir so huge that some scientists believe sudden releases of undersea methane eons ago set off abrupt, catastrophic changes in climate. Humankind cannot tap into the bulk of these deep, vast deposits by any known means. But even a small proportion of a very big number is a very big number.

Hydrates were regarded purely as laboratory curiosities until the 1930s, when a Texas petroleum researcher realized that they were clogging natural-gas pipelines in cold weather. Three decades later, exploration in Siberia revealed gelid bands of methane hydrate embedded in the tundra. Meanwhile, oceanographers were observing anomalies in sonar readings of the seafloor. Some areas of the bottom bounced sound waves back more sharply than one would expect from muddy sediment. It was like waving a flashlight in a dark room and being startled by the flash from a mirror. Three geologists suggested in 1971 that these reflective zones were layers of methane hydrate. Not until 1982 did researchers obtain a large chunk of methane hydrate—a three-foot section of a core sample. The gas inside was 99.4 percent methane. That year, the United States established a methane-hydrate research program.

The investigation was a small, belated part of a global push into unconventional petroleum that had been spurred by the oil shocks of the 1970s. For civilians, understanding unconventionals is difficult, not least because of the taxonomic hodgepodge the industry uses to describe them: tar sands, tight oil, heavy oil, shale gas, coal-bed methane, shale oil, oil shale. (Exasperatingly, shale oil is different from oil shale.) All of these different flavors of petroleum are "unconventional" simply because in the past they were too hard to pull from the earth to be worth the bother. Nowadays technology has made many of them accessible.

methane map
Stored mostly in broad, shallow layers beneath the seafloor, methane hydrate is, by some estimates, twice as abundant as all other fossil fuels combined. The yellow squares show where methane hydrate has already been recovered; the blue dots, where it is thought to exist. (Map by Alice Cho)

With the odd exception, unconventionals can be broken into two rough categories: forms of petroleum that are heavier and less refined than the crudest of crude oil, and forms that are lighter and more refined than crude oil. Both are worth huge sums and entangled in dispute, much like conventional petroleum. But the second category, which includes the natural gas from methane hydrate, seems likely to play a much larger role in humankind's future—economically, politically, and, most of all, environmentally.

The first, heavy category consists of petroleum that must be processed on-site to be transformed into oil. Tar sands, for instance, consist of ordinary sand mixed with bitumen, a sludgy black goo that hasn't withstood enough geological heat and pressure to be converted fully into ordinary oil. The most important tar-sand deposits are underneath an expanse of subarctic forest in central Canada that is roughly the size of England; they make up the third-biggest proven oil reserve in the world. In most cases, mining tar sands involves drilling two horizontal wells, one above the other, into the bitumen layer; injecting massive gouts of high-pressure steam and solvents into the top well, liquefying the bitumen; sucking up the melted bitumen as it drips into the sand around the lower well; and then refining the bitumen into "synthetic crude oil." Refining in this case includes removing sulfur, which is then stored in million-ton, utterly useless Ozymandian slabs around mines and refineries.

Economists sometimes describe a fuel in terms of its energy return on energy invested (EROEI), a measure of how much energy must be used up to acquire, process, and deliver the fuel in a useful form. OPEC oil, for example, is typically estimated to have an EROEI of 12 to 18, which means that 12 to 18 barrels of oil are produced at the wellhead for every barrel of oil consumed during their production. In this calculation, tar sands look awful: they have an EROEI of 4 to 7. (Steaming out the bitumen also requires a lot of water. Environmentalists ask, with some justification, where it all is going to come from.)

Conveying tar-sands oil to its biggest potential markets, in the United States, will involve building a huge pipeline from Alberta to Texas, which has attracted vituperative opposition from environmental groups and some local governments. The U.S. State Department has long delayed issuing permits to allow this pipeline to cross the border, a stall that has outraged energy boosters, who charge that the Obama administration is spitting in the soup of Canada, America's most important ally. The boosters say little about the two 100 percent Canadian pipelines—one to shoot tar-sands oil to a port in British Columbia, a second to Montreal—that 100 percent Canadian opposition has stalled. All the while, indigenous groups in central Canada, people armed with special powers granted by the Canadian constitution, have carpet-bombed tar-sands country with lawsuits. Regardless of the merits of the protesters' arguments, it is hard to believe that they will be completely ineffective, or that tar-sands oil will flow freely anytime soon.

Much more prominent is the second unconventional category, the most important subcategory of which is the natural gas harvested by fracking shale. Every few years, the U.S. government produces a map of American shale beds. Flipping through a time series of these maps is like watching the progress of an epidemic—methane deposits pop up everywhere, and keep spreading. To obtain shale gas, companies first dig wells that reach down thousands of feet. Then, with the absurd agility of anime characters, the drills wriggle sideways to bore thousands of feet more through methane-bearing shale. Once in place, the well injects high-pressure water into the stone, creating hairline cracks. The water is mixed with chemicals and "proppant," particles of sand or ceramic that help keep the cracks open once they have formed. Gas trapped between layers of shale seeps past the proppant and rises through the well to be collected.

Water-assisted fracturing has been in use since the late 1940s, but it became "fracking" only recently, when it was married with horizontal drilling and the advanced sensing techniques that let it be used deep underground. Energy costs are surprisingly small; a Swiss-American research team calculated in 2011 that the average EROEI for fracked gas in a representative Pennsylvania county was about 87—about six times better than for Persian Gulf oil and 16 times better than for tar sands. (Fracking uses a lot of water, though, and activists charge that the chemicals contaminate underground water supplies.) Because of fracking, U.S. natural-gas reserves have jumped by almost three-quarters since 2000.

Page 2 of 4