Page 1 of 4

The BP Cover-Up

BP and the government say the spill is fast disappearing—but dramatic new science reveals that its worst effects may be yet to come.

Read also: The rest of this special report and MoJo's complete BP coverage.

WE'RE SWINGING ON ANCHOR this afternoon as powerful bursts of wind blow down through the Makua Valley and out to sea. The gales stop and start every 15 minutes, as abruptly as if a giant on the far side of the Hawaiian island of Oahu were switching a fan on and off. We sail at the gusts' mercy, listing hard to starboard, then snapping hard against the anchor chain before recoiling to port. The intermittent tempests make our work harder and colder. We shiver during the microbursts, sweat during the interludes, then shiver again from our own sweat.

I'm accompanying marine ecologist Kelly Benoit-Bird of Oregon State University, physical oceanographer Margaret McManus of the University of Hawaii-Manoa, and two research assistants aboard a 32-foot former sportfishing boat named Alyce C. On the tiny aft deck, where a marlin fisher might ordinarily strap into a fighting chair, Benoit-Bird and McManus are launching packages of instruments: echo sounders tuned to five frequencies; cameras; and a host of tools designed to measure temperature, salinity, current velocity, chlorophyll fluorescence, and zooplankton abundance, all feeding into computers lashed into the tiny forward cabin.

Advertise on

Despite the impressive technology crammed aboard the boat, its deployment is pure 19th century. At any given time, two of us man the aft winch, launching the equipment overboard by hand, feeding out dual lines of nylon and coaxial cable, slowly wearing calluses into our gloves as we ease the instruments through the water column at roughly 33 feet per minute. Six feet shy of the bottom, 74 feet down, the rig is hauled back up, collecting data the whole way. The process is repeated around the clock for the next 24 hours, a procedure either monotonous or meditative, depending on your frame of mind. Near the bottom, McManus calls, "Making a mark." She might as well be calling "mark twain."

But whereas old-time riverboat captains sounding with lead-weighted ropes were gleaning information about safe shipping channels and shifting sandbars, we're sounding for signs of life. To the untrained eye, the incoming echo soundings appear as waves of blue, green, and yellow scrolling horizontally across our computer monitors. To the trained eye, they appear as layers of life flooding in on darkness. Benoit-Bird points toward the screens, each one tuned to read the sonar signature of a different-size life form. "That layer is zooplankton," she says. "And that layer is fish." Suddenly, I can see a crude facsimile of the migrations of the nighttime sea.

OctopodCreatures living in the deep scattering layer of the Gulf of Mexico include juveniles like this octopod. Lantern Fish Lantern fish like this one are a keystone species in the marine food web.Hatchetfish DSL species like hatchetfish have light-emitting organs.

Most of the marine life familiar to us at the surface inhabits the epipelagic zone, the sunlit realm, stretching down to about 600 feet. Yet many whales, dolphins, seals, sea turtles, sharks, manta rays, billfish, and smaller predatory fish are nocturnal hunters, dependent on the mysterious movements of a vast community of organisms known as the deep scattering layer (pdf), or DSL. This aggregation of life forms was unknown until the 1920s, when early hydrographers mapping the ocean with sound encountered a daytime "seafloor" around 3,300 feet, which rose perplexingly toward the surface at night. Named for its echo-reflecting signature, the DSL was eventually recognized by marine biologists in 1948 to be layers of living creatures hiding on the cusp between perpetual twilight and darkness.

What the echo sounders of old were actually picking up were the billions of swim bladders (buoyancy floats) of the fish inhabiting the dark realm of the DSL—primarily lantern fish, bristlemouths, and hatchetfish. These fish, generally between one and twelve inches long, are endowed with the usual fishy hardware of fins, scales, lateral lines, and tails. But their habit of hiding in the darkness by day and chasing darkness upward at night led to the development of extraordinarily large eyes and organs, known as photophores, capable of producing light—usually a weak blue, green, or yellowish light—the color and pattern of which signal the fish's species and gender, as well as information used in shoaling and other communications we don't understand. The photophores also create a camouflage known as counterillumination. By adjusting internal dimmer switches, these mesopelagic ("middle sea," or twilight zone) fish match the slightest overhead ambient light level—be it the faint glow of the sun or moon—making their silhouettes less visible to predators above and below.

DSL species rise at night—some to waters as shallow as 30 feet deep—for a variety of reasons: Some are avoiding the daytime surface hunters; others are avoiding the nocturnal hunters of the DSL who don't rise (like lancetfish); still others are saving energy by spending their days in a sleeplike state prompted by the frigid waters. (The alternative, living only at the warm surface, produces a fast metabolism requiring more food.) Krill, among the most abundant and important invertebrates of the DSL, rise at night to graze on the pastures of the sea: single-celled phytoplankton, plants that survive only in the sunlight zone.

The lantern fish, bristlemouths, hatchetfish, and crustaceans of the DSL are believed to account for 80 percent of all the biomass in the mesopelagic zone, with lantern fish alone making up some 660 million tons of living fish—perhaps the greatest distribution, population, and species diversity of all ocean fish on the planet. The mesopelagic fauna also includes many kinds of squid, krill, and siphonophores and ctenophores (jellyfish-like animals), as well as worms, sea butterflies, and larvae that comprise the DSL zooplankton. The vast life of the deep scattering layer supports the surface life above it, including the $172 billion global seafood and aquaculture industries (pdf).

Hidden Damages
Click on the image to expand to full size.

It's no wonder then that most of the predators of the sunlit sea make their living diving to meet the DSL, which rises like a great dumbwaiter from the deep bearing every manner of seafood delicacy on a platter of darkness. No wonder, too, that the DSL is being eyed by the fishing industry as the last great resource to be exploited.

Not long after dark, dolphins show up on the data stream, monopolizing the monitors with bold red and orange signatures. These are spinner dolphins who've spent the daytime hours resting in shallow coastal waters, hiding from sharks, sleeping with eyes wide open and their echolocation shut down. During the couple of years in the '90s I spent filming a documentary about spinners, darkness marked the frustrating end of our workday, the time we were forced to leave the school behind, to listen wistfully to the sounds of their leaps and spins as they splashed on an ocean surface we could no longer see. They were racing offshore to begin diving into the deep scattering layer. This much we knew. But in filmmaking parlance, it was called "dip to black." Because what the dolphins did down there in the dark was unknown, and seemingly unknowable.

JUST ABOUT THE TIME WE drop anchor off Oahu, and unbeknownst to us, a catastrophe is being unleashed 4,400 miles and five time zones away, in the Gulf of Mexico. A mile below sea level, methane is shooting up the experimental well drilled by the Deepwater Horizon rig, exploding at the well's head, killing 11 workers, and igniting a firestorm. After 36 hours of a raging inferno—and still unknown to any of us—the rig will sink and open a valve to the gargantuan reservoir of the Macondo oil field, estimated to contain perhaps as much as 1 billion barrels, or 42 billion gallons, of crude.

Though it won't be understood for weeks, the Deepwater Horizon is different from any other spill in human history. The extreme technology used to drill at unprecedented depths lacks the extreme safety equipment and protocols needed to stave off disaster. BP, gambling at the border of controllable engineering, has lost spectacularly in its bid to be the deepest and cheapest driller of them all.

And no one is ready for it. Not the Minerals Management Service, catering submissively to BP's laughable Gulf oil-spill "plan," a document featuring wildly inaccurate wildlife assessments (including walruses and other species nonexistent in the Gulf) and an on-call expert who's been dead for years. Not the scientists whose research is paid for by the oil cowboys. Not the environmental groups, who did not foresee the stupendous potential for cataclysm on oil's farthest frontier. Not the media, who almost entirely ignored the sneak preview offered last year by the blowout of the West Atlas rig drilling in the Timor Sea off Australia—a disaster that required five attempts at a relief well and 74 days to stanch. Far offshore, far from sight, far beyond the typical royalty-paying boundaries, BP and its partners have transformed themselves into modern-day pirates, operating beyond law or conscience. Their reckless quest has endangered and perhaps condemned not just the Gulf Coast, but the largest, richest, most pristine, most biologically important, and last completely unprotected ecosystem left on Earth: the deep ocean.

Despite an ever-expanding estimate of the volume of the spill, relatively little oil washes ashore at first, and only a small portion ever will. Instead, trapped in the deep, the oil fouls the ocean's twilight and dark zones: the mesopelagic and the bathypelagic (bathos: deep). After April 20, the dumbwaiter rising through the waters of the Gulf of Mexico will be ascending an ocean fouled with a toxic broth of oil, methane, chemical dispersants, and drilling mud. The relatively small amounts of oil washing ashore, and the relief felt when the surface oil began to dissipate, hardly account for the devastation being wrought in the dark world beyond our sight.

Page 1 of 4