A Growing Concern

As biotech crops come to market, neither scientists -- who take industry money -- nor federal regulators are adequately protecting consumers and farmers.

It was the talk of the cotton belt last year, a hype that blew like a lush wind from Arizona to North Carolina. After a decade of high -- priced research, Monsanto Company was finally coming to market with a genetically altered cotton seed that would produce its own "natural" bug killer right there in every fiber of the plant. In the equipment sheds and ginning plants of central Texas, the seed was said to be a marvel of man over nature, the perfect child of a new science that would forever change agriculture.

This superseed -- the offspring of Monsanto's union with one of the oldest seed companies in the country, Delta and Pine Land of Mississippi -- would reduce the need for airplanes dusting costly pesticides on the cotton fields below, at least for the bollworm and the budworm. Bacillus thuringiensis (Bt), a toxic bacterium long used topically by organic farmers, was now part of the plant's genetic makeup. Rain couldn't wash it off. Sun and wind wouldn't break it down. The unsuspecting caterpillars would never know what hit them. After a few innocent bites, a dose of hidden toxin would rend the pests' stomach walls like razor blades, killing the bugs within three days.

In early 1996, St. Louis-based Monsanto gathered together farmers at lunch meetings throughout the cotton belt and pressed the gospel of Bt cotton. Gary Conn, a fourth-generation cotton farmer who leases more than 1,000 acres in the Brazos River Valley, the most fertile farmland in the Lone Star state, wanted to believe in the new technology.

Benedict blames the system. "The universities are cheering us on, telling us to get closer to industry, encouraging us to consult with big business. The bottom line is to improve the corporate bottom line. It's the way we move up, get strokes.... We can't help but be influenced from time to time by our desire to see certain results happen in the lab."

Private industry contributes 10 percent of Texas A&M's whopping $41 million annual agricultural research budget, and Benedict says he knew Monsanto was contributing money to his research. "All of these companies have a piece of me," Benedict says. "I'm getting checks waved at me from Monsanto and American Cyanamid and Dow, and it's hard to balance the public interest with the private interest. It's a very difficult juggling act, and sometimes I don't know how to juggle it all."

Science for Sale?

Congress has helped pave the way for corporate biotech programs, passing a series of laws in the 1980s that pushed federally funded research at universities into the eager hands of agrochemical companies. Congressional specialty grants, which are designed to let Congress respond to pressing agricultural concerns, are generally awarded to researchers who already have industry sponsors in place. "[Universities] don't necessarily say who their other funders are, but they will tell us if the project is leveraged 4-to-1 by private dollars," says Tim Sanders, a staff member of the House Appropriations Agriculture Subcommittee. Industry support is important, he says, because committee members "want to see everyone participate."

Under a banner of global competitiveness, this new relationship between academia, business, and government encourages universities to waste no time converting their science into patent rights. Previously, such research had been considered public property. Any patents that emerged typically were held by government. Indeed, so ingrained was this public ethos that when Jonas Salk was asked who owned the patent to his polio vaccine, he responded incredulously, "The people, I would say. Could you patent the sun?"

Today, however, universities are quick to license patent rights to companies for profit-making. These same companies, meanwhile, award grants to university entomologists and geneticists to conduct research on future products.

Often, critics say, it doesn't take a great deal of money to entice a university department or scientist over to the corporate side, particularly in this time of state and federal funding cuts. "Universities are more than ever hunting for corporate money, and while that money may be a small percentage of the overall budget, it's often enough to influence the direction of public science,'' explains Kathleen Merrigan of the Henry A. Wallace Institute for Alternative Agriculture, a nonprofit research and education organization based in Washington, D.C. "Corporate money can be the tail that wags the dog." For example:

  • In 1985, Cornell University agreed to do research on bovine growth hormone (BGH) for Monsanto. Tess Hooks, a sociologist at the University of Western Ontario whose graduate work at Cornell dealt with scientific ethics, reviewed the agreement between Cornell and Monsanto.

    According to Hooks, the university would test BGH on dairy cows and report the findings to Monsanto, which would present its case to the FDA. The government agency would then decide if the hormone -- which increases a cow's milk production -- created any health risks to cows or milk consumers. But before Cornell received the $557,000 grant from Monsanto, Hooks says, it essentially had to agree to hand over control of its research to the biotech company.

    Computers in the university's dairy barn sent the raw data directly to Monsanto in St. Louis. According to Hooks, the company, rather than the university's principal research scientist, controlled and interpreted the data. "I couldn't believe that a university would agree to such restrictions," says Hooks.

    Monsanto's efforts to get BGH approved in the United States were dogged by controversy. Current and former FDA employees accused the agency of overlooking important safety concerns in its review of the product and of committing ethics violations because several recently hired FDA officials had worked on BGH for Monsanto. In the end, the FDA was cleared of misdoing. But questions about the hormone persisted. In 1994, several British scientists charged that Monsanto had suppressed their independent analysis of the company's data because it showed a higher rate of infection for cows treated with BGH than Monsanto had acknowledged.

  • At North Carolina State University, a miniscandal erupted three years ago when several professors were found to be moonlighting as paid consultants to Rhone-Poulenc, Monsanto, and American Cyanamid -- at the same time the professors were evaluating the companies' biotech products for the university. One distinguished weed science professor, Harold Coble, appeared in a Rhone-Poulenc marketing brochure singing the virtues of the company's genetically engineered cotton plant and its companion herbicide, bromoxynil. "There isn't a downside to the BXN," he says in the brochure.

    As a result of the controversy, the university instituted a policy requiring faculty to report on a yearly basis any potential conflicts of interest, such as consulting for a chemical company.

    Other scientists who have done research for biotech companies dismiss these examples as anomalies. "Practically all of my money for research comes from industry, but I've never done anything to help a company promote its product," says Daniel Colvin, a University of Florida agronomist. "If you manipulate the truth, it takes only one season on the farm to find out that the product doesn't work like you said it would. After one bad season, your credibility with the farmer is shot."

    But in some cases it is difficult to tell where public research ends and the company's marketing begins.

    Take, for example, the August 25, 1996, letter from Ron H. Smith, an entomologist at Auburn University, that Monsanto faxed to Mother Jones in support of its Bt cotton. "Weeks from now," Smith wrote, "when the last bale of the 1996 cotton crop is harvested...producers finally will have time to pause and reflect on the revolution that has gripped their profession. The results, so far, have been astonishing.... The proof, as they say, is in the pudding -- or, in this case, the [farmer's] pocketbook."

    Although the letter bore Smith's signature, an Auburn public relations official actually wrote it for him. When asked if he received any funding from Monsanto for his research, Smith replied, "No, not directly." However, Mother Jones found university records indicating that Monsanto gave $500,000 to Auburn University between 1991 and 1996; $26,000 was earmarked for projects listing Smith's name. When asked again, Smith confirmed the information, saying he had misunderstood the original question.

  • The Bt Danger

    Last spring, farmers in 11 states tried Monsanto's Bt cotton, planting a total of 2 million acres. Its failure in Texas, and the pest problems that resulted, have heightened fears among environmental and consumer watchdog groups that some insects will quickly develop resistance to the new gene. Organizations such as the Union of Concerned Scientists are criticizing the EPA for caving in to pressure from Monsanto. "There was direct pressure on the EPA by Monsanto to move quickly," says UCS senior staff scientist Jane Rissler. "[This] incident shows that Monsanto's strategy as approved by the EPA is a failure."

    The EPA maintains it made a safe bet with Bt cotton but admits it is still an unknown. "It's out there for commercial use," says Elizabeth Milewski, a spokeswoman for the EPA. "But at this time, we don't know what the real story is." Milewski points out that further evaluation of the crop is entirely dependent on Monsanto's own reporting. According to Lynn Goldman, the EPA official in charge of approving genetically engineered crops, a possible danger of an insufficiently tested Bt cotton seed is that it won't produce a strong enough dose of the toxin to deliver a fatal blow to the worms. This could rapidly lead to increased resistance, ending the usefulness of Bt.

    "Our scientists feel that you could possibly see insect resistance in three to five years unless some careful steps are taken to prevent it," says Goldman. In July, she requested that Monsanto submit further testing on the bollworms that survived on last summer's Bt cotton crop. As of press time, the results had not yet been reviewed.

    The EPA has taken some steps to try to inhibit the development of pest resistance to Bt. For example, the agency required farmers to plant a small plot of non-Bt cotton within their Bt fields. In theory, such "refuges" ensure that some of the mating bugs do not feast on Bt cotton, thereby watering down the resistance potential of the bug population. Farmers are expected to comply because when they buy the seed, they grant Monsanto the right to inspect their farms.

    But another EPA staffer candidly admits the refuge theory was untried -- and the EPA's evaluation of its success, like the bollworm report, is dependent on information supplied by Monsanto. "The problem is that, based on science and the theories, this is untested," says the staffer. "So what's our guarantee of enforceability? Do we wait until we're absolutely sure, or do we take our best professional judgment with all its bells and whistles and see what happens? Monsanto put [refuge requirements] in the contracts with the farmers, but the EPA can't regulate what the farmers do in the fields."

    Growing Questions

    Insect resistance to pesticides isn't the only possible danger of biotech crops. Scientists also warn about the unknown health implications to humans. A study of transgenic crops published in the New England Journal of Medicine last March looked at soybeans inserted with Brazil nut genes and proved that allergens can be transferred from one crop to another through genetic engineering. An editorial in the same issue called on the FDA for better research, noting that current requirements for transgenic crops "would appear to favor industry over consumer protection."

    In fields across the country, genetically pumped-up cropsÑfrom a virus-resistant yellow crookneck squash to transgenic wheatÑare being groomed for market. And hundreds more are in the pipeline, some implanted with the genes of animalsÑsuch as new varieties of corn, soybeans, oats, rice, apples, broccoli, cucumbers, lettuce, melons, raspberries, strawberries, papayas, and plums. There's even transgenic seafood in the works, including genetically altered salmon, prawns, catfish, and abalone.

    Even biotech supporters concede that there is no way to predict the health and environmental consequences of this transgenic stampede. "It's scary. We're so caught up in the pyrotechnics that we tend to forget that what we are doing here is altering the genetic codes of living things," says Sharad Phatak, a plant researcher at the University of Georgia.

    "When you insert a foreign gene, you are changing the whole metabolic process," he adds. "You just don't change one thing. Each change is going to have an effect on other pathways. Will that one gene kick off a whole slew of changes? We don't know for sure."

    Susan Benson is a San Francisco freelance writer and former editor of Farmer to Farmer. Mark Arax is a reporter for the Los Angeles Times. Rachel Burstein is an investigative reporter for Mother Jones. Staff reporter Jeanne Brokaw contributed additional research for this story.