The Future of Energy
Page 1 of 3

The Nuclear Option

So you're against nuclear power. Do you know why?

A decade and a year after Enrico Fermi demonstrated the first atomic fission chain reaction, President Dwight D. Eisenhower went before the United Nations General Assembly to avert an apocalypse. Other nations now had in their hands the weapon with which the United States had pulverized two Japanese cities; altruistic scientists and eager investors both had pressured the president to share the technology for peaceful uses. And so Eisenhower had little choice on that December day in 1953 but to announce a new purpose for the force inside the atom: Properly monitored and generously financed, he declared in his "Atoms for Peace" address, fission could be harnessed "to provide abundant electrical energy in the power-starved areas of the world."

Advertise on

You could have been forgiven for thinking the president and his advisers had just hatched the notion that month, so full of poetic wonder and portent was that speech. In fact, not only were the Soviets about to power up a five-megawatt reactor, but the Westinghouse Electric Corporation was well on its way to building the country's first commercial atomic power plant. Within five years, the Shippingport Atomic Power Station would begin sending its 60 megawatts of electricity to the city of Pittsburgh.

That was probably about the best atomic power ever looked. For it wasn't long before the electricity touted as "too cheap to meter" proved too pricey for profit: The power that came out of Shippingport cost 10 times the going rate. Though in the coming years many more reactors would be hitched to the nation's grid, Eisenhower's gallant dreams were undone by rising construction costs, high maintenance bills, and risk. The last application for a new nuclear plant was withdrawn in 1978. By the time Three Mile Island nearly melted down in 1979, the United States was through with nuclear-generated electricity.

Until now.

When President George W. Bush celebrated the Energy Policy Act of 2005 at the Calvert Cliffs nuclear plant in Maryland, he may as well have been delivering the 21st-century update of Eisenhower's 1953 manifesto, minus the poetry, and plus some dopey jokes. ("Pass the Mayo," he chirped to Constellation Energy CEO Mayo Shattuck.) This time, however, the marketing slogan was not about peace, but the very future of the planet. "Without these nuclear plants," Bush said, "America would release nearly 700 million metric tons more carbon dioxide into the air each year." Half a century after Shippingport powered up, the U.S. government has once again entwined its long fingers under the heel of the big industry that couldn't.

In his day, Eisenhower shared his vision with a number of vocal pacifists: Redirecting atomic power to electricity, they believed, would at least keep the military occupied with something other than blowing up cities. And Bush shares his vision with some prominent environmentalists: Stewart Brand, for instance, who founded the Whole Earth Catalog and Fred Krupp, the director of the Environmental Defense Fund, who believes that "the challenge of global warming is so urgent we can't afford to take anything off the table."

As far back as 1978, Tom Alexander—an award-winning science writer with a deep knowledge of economics and ecology—urged utilities in the pages of Fortune to resuscitate the already-flagging nuclear industry lest a ramp-up in coal-fired electricity "trigger irreversible changes in the world's climate." The ramp-up happened on schedule; the changes in climate too. Which now makes it very hard to ignore the fact that whatever else nuclear power does to the environment, however many fish it kills or however much waste it leaves in our great-great-great-great-grandchildren's hands, it emits neither soot nor smoke nor mercury, and far less carbon dioxide than the coal that keeps most of our lights on.

Industry has been quick to take advantage of the shifting political climate: Last year, UniStar submitted an application for a new nuclear reactor to the U.S. Nuclear Regulatory Commission (NRC), the first to cross the agency's desk since Jimmy Carter was president. Four more followed, and 14 separate companies have notified the agency that they will file applications in the next year. It's hard to imagine any of the current presidential candidates slashing nuclear subsidies once in office. (Senator Barack Obama, for one, represents a state with 11 of the nation's 104 civilian reactors, and his donors include employees of nuclear giant Exelon.)

But can nuclear power really rescue our warming planet? And if you answered quickly, answer this too: Are you for or against because you know the science, or because someone said you should be?

When we talk about nuclear power these days, we talk about environmentalists for nukes, and about people posing as environmentalists for nukes. We talk about Dick Cheney's energy bill defibrillating a faltering industry with $12 billion worth of incentives and tax breaks. We talk about who is for and who is against, and whether we can trust them.

But no one talks about fission. No one talks about the letter Albert Einstein wrote to FDR in 1939, advising the president that "it may become possible to set up a nuclear chain reaction in a large mass of uranium" to produce enormous amounts of power. No one mentions that breathtaking moment on December 2, 1942, when Fermi, on a squash court at the University of Chicago, had an assistant slowly pull a control rod from a pile of uranium and graphite, sustaining a controlled chain reaction for 28 minutes and thus securing atomic power's industrial future.

For the last four years, I have tried to shut out the chatter—the goofy Nuclear Energy Institute ad (girl on a scooter says, "Our generation is demanding lots of electricity...and clean air."), and the warnings of No Nukes godmother Helen Caldicott, who, rightly or wrongly, cannot think of splitting atoms without thinking of weapons. I've tried to focus instead on the awesome force that binds the nucleus and whether it can ever be an appropriate source of civilian energy.

The idea of nuclear power arose more than half a century ago out of the most noble impulses of humanity's brightest minds, scientists who hoped that the destructive force they'd harnessed, the most concentrated source of energy on earth, could also be applied for good. But atomic electricity strayed so far from its promise—corrupted by government's collusion with industry, mismanagement for the sake of profit, and ordinary bureaucratic incompetence—that we seem flummoxed at the thought of ever reclaiming it.

To consider a technology as terrifying as nuclear power requires more than slogans. It requires looking beyond the marketing and activism, into the physics and its consequences. It means thinking about rocks. And waste. And fission.


Hot Rocks, Warm Water


Like so many sources of energy, nuclear power begins with a rock—a brownish chunk of hard dirt, flecked with glittery particles. You can hold uranium in your hand without much trouble: As it decays into other elements—thorium, radium, and eventually lead—it throws off radioactive particles, but most of them can't penetrate your skin. Nor can they sustain a controlled chain reaction in most of the world's nuclear reactors. For that, you need a certain neutron-rich uranium isotope, U-235, which makes up only a tiny portion of raw uranium ore.

Natural uranium comes out of the ground in Canada, Australia, Niger, and several other countries. Uranium is finite, and it's not easy to find—as a consequence of the impending nuclear revival, mines that were once declared unprofitable may open once again, including some in the western United States. This worries people who remember the last uranium boom in the Southwest: From the 1940s through the 1980s, more than 15,000 men, many of them Navajo, worked the mines, often without protection. Many eventually came down with cancer or respiratory diseases. Few were compensated. When the mines closed, piles of uranium tailings were left mouldering along the Colorado River, leaching at least 15,000 gallons of toxic chemicals a day into water destined for taps in Arizona and California.

To be useful as nuclear fuel, uranium ore has to be refined into uranium oxide (the yellowcake of Niger fame) and then enriched—turned into pellets of 4 percent U-235. The sole U.S. plant that enriches uranium for civilian power reactors, located in Paducah, Kentucky, accomplishes this via an energy-hogging process that consumes 15 billion kilowatt-hours of electricity a year. Even so, carbon emissions for the entire nuclear fuel cycle come to no more than 55 grams of CO2 per kilowatt-hour—roughly even with solar. By 2010, when the U.S. Enrichment Corporation is slated to switch to the more efficient method used in Europe, that number should come down closer to 12 grams per kilowatt-hour—on par with wind.

Nuclear power does have other environmental consequences, drawbacks that have nothing to do with carbon: Aside from radiation (more on that later), a particularly delicate one involves cooling water. "Light water" reactors, used at the majority of the world's nuclear plants (so named because they employ ordinary H2O, as opposed to water made with a heavy hydrogen isotope), use water both to moderate the chain reaction and produce steam to spin turbines—2 billion gallons per day on average. Most of it returns to the adjoining river, lake, or ocean up to 25 degrees warmer, an ecological impact that could significantly interfere with nuclear power's chances as a climate-change solution. Already, wherever a light-water reactor sits near a sensitive body of water, its intake pipes kill fish and its outflow distorts ecosystems to favor warm-water species.


The Cancer Conundrum


Will a nuclear reactor operating under normal conditions give you cancer? It's a question that, surprisingly, still hasn't been conclusively answered. A 1995 Greenpeace study found an increase in breast-cancer mortality among women living near various U.S. and Canadian reactors in the Great Lakes region. Yet peer-reviewed studies by the Ontario Cancer Treatment and Research Foundation as well as the National Cancer Institute show no significant increase in cancer among people living near reactors. An initiative called the Tooth Fairy Project is currently trying to prove that concentrations of the radioactive isotope strontium-90 are higher in baby teeth from children who grow up near nuclear plants. But those tests are not complete, and no one else has turned up persuasive evidence of such a link.

"Without a baseline study, we don't have any credibility" on the cancer issue, longtime Southern California anti-nuclear activist Rochelle Becker once told me. "There are so many things wrong with the nuclear industry that are confirmable that we try to stay away from that."

We do know that nuclear plants routinely release small amounts of radioactive gases, and that those releases expose nearby residents to a small dose of radiation—one that the Health Physics Society, which governs radiation measurements, says will probably not increase their risk of getting cancer. We know that elevated levels of radioactive tritium—which gets into water and is easily ingested—have been found downstream from nuclear facilities, and we know that the scientific consensus holds that no amount of radiation is good for you.

But we also know this: 24,000 Americans per year die of diseases related to emissions from coal-fired power plants, which release sulfur dioxide, smog-forming nitrogen, toxic soot, and mercury—not to mention 2.5 billion tons of carbon dioxide annually.

It's a devil of a dilemma: One source of always-on "base load" power kills people every day. Another kills people only if something goes terribly wrong. And it could.


Accidents Happen


Early in the morning of March 28, 1979, a combination of malfunctioning equipment and inadequately trained workers led to a loss-of-coolant episode at Three Mile Island Unit 2 near Middletown, Pennsylvania. Had workers not finally arrested the disaster 10 hours after it started, the fuel inside the reactor could have melted completely—the disaster scenario alluded to in the movie The China Syndrome, which had arrived in theaters just a few weeks before. The partial meltdown and subsequent radiation leak was the worst nuclear accident ever on U.S. soil; in its wake, public support for the technology dropped from 70 to 50 percent, where it remains today. Industry proponents claim that no one died as a direct result of the accident, and in 1990, a Columbia University study found no elevated radiation-related cancer risk in the population near the plant. A later study, though, found a tenfold increase in cancer among the people who lived in the path of the radioactive plume.

Because of Three Mile Island, the night crew performing an ill-advised test at the Chernobyl plant on April 26, 1986, might have been prepared for a loss-of-coolant episode. But they didn't know enough about the plant they were tinkering with to have an idea what to do when things went grievously wrong. The reactor exploded, and the fire spewed a massive cloud of radiation across Europe.

There are no reactors as fire-prone as Chernobyl in the United States, and reactor safeguards have been upgraded dramatically since Three Mile Island. Emer­gency core-cooling systems kick in if other systems fail; operators have been trained to respond promptly when something goes awry. But just because what has already happened may not happen again doesn't mean we should relax: Human error has infinite permutations, and near misses in the last decade have shown just how vulnerable reactors remain.

Page 1 of 3
Get Mother Jones by Email - Free. Like what you're reading? Get the best of MoJo three times a week.