Another Big Question About AI: Its Carbon Footprint

It’s “an accelerant for everything,” potentially including climate change.

City buildings with blue lines throughout them

Pixabay/Pexels

This story was originally published by Yale E360 and is reproduced here as part of the Climate Desk collaboration.

Two months after its release in November 2022, OpenAI’s ChatGPT had 100 million active users, and suddenly tech corporations were racing to offer the public more “generative AI” Pundits compared the new technology’s impact to the Internet, or electrification, or the Industrial Revolution—or the discovery of fire.

Time will sort hype from reality, but one consequence of the explosion of artificial intelligence is clear: this technology’s environmental footprint is large and growing.

AI use is directly responsible for carbon emissions from non-renewable electricity and for the consumption of millions of gallons of fresh water, and it indirectly boosts impacts from building and maintaining the power-hungry equipment on which AI runs. As tech companies seek to embed high-intensity AI into everything from resume-writing to kidney transplant medicine and from choosing dog food to climate modeling, they cite many ways AI could help reduce humanity’s environmental footprint. But legislators, regulators, activists, and international organizations now want to make sure the benefits aren’t outweighed by AI’s mounting hazards.

“The development of the next generation of AI tools cannot come at the expense of the health of our planet,” Massachusetts Sen. Edward Markey (D) said last week in Washington, after he and other senators and representatives introduced a bill that would require the federal government to assess AI’s current environmental footprint and develop a standardized system for reporting future impacts. Similarly, the European Union’s “AI Act,” approved by member states last week, will require “high-risk AI systems” (which include the powerful “foundation models” that power ChatGPT and similar AIs) to report their energy consumption, resource use, and other impacts throughout their systems’ lifecycle. The EU law takes effect next year.

Meanwhile, the International Organization for Standardization, a global network that develops standards for manufacturers, regulators, and others, says it will issue criteria for “sustainable AI” later this year. Those will include standards for measuring energy efficiency, raw material use, transportation, and water consumption, as well as practices for reducing AI impacts throughout its life cycle, from the process of mining materials and making computer components to the electricity consumed by its calculations. The ISO wants to enable AI users to make informed decisions about their AI consumption.

Right now, it’s not possible to tell how your AI request for homework help or a picture of an astronaut riding a horse will affect carbon emissions or freshwater stocks. This is why 2024’s crop of “sustainable AI” proposals describe ways to get more information about AI impacts.

In the absence of standards and regulations, tech companies have been reporting whatever they choose, however they choose, about their AI impact, says Shaolei Ren, an associate professor of electrical and computer engineering at UC Riverside, who has been studying the water costs of computation for the past decade. Working from calculations of annual use of water for cooling systems by Microsoft, Ren estimates that a person who engages in a session of questions and answers with GPT-3 (roughly 10 t0 50 responses) drives the consumption of a half-liter of fresh water. “It will vary by region, and with a bigger AI, it could be more.”

But a great deal remains unrevealed about the millions of gallons of water used to cool computers running AI, he says. The same is true of carbon.

“Data scientists today do not have easy or reliable access to measurements of [greenhouse gas impacts from AI], which precludes development of actionable tactics,” a group of 10 prominent researchers on AI impacts wrote in a 2022 conference paper. Since they presented their article, AI applications and users have proliferated, but the public is still in the dark about those data, says Jesse Dodge, a research scientist at the Allen Institute for Artificial Intelligence in Seattle, who was one of the paper’s coauthors.

AI can run on many devices—the simple AI that autocorrects text messages will run on a smartphone. But the kind of AI people most want to use is too big for most personal devices, Dodge says. “The models that are able to write a poem for you, or draft an email, those are very large,” he says. “Size is vital for them to have those capabilities.”

Big AIs need to run immense numbers of calculations very quickly, usually on specialized Graphical Processing Units—processors originally designed for intense computation to render graphics on computer screens. Compared to other chips, GPUs are more energy-efficient for AI, and they’re most efficient when they’re run in large “cloud data centers”—specialized buildings full of computers equipped with those chips. The larger the data center, the more energy efficient it can be. Improvements in AI’s energy efficiency in recent years are partly due to the construction of more “hyperscale data centers,” which contain many more computers and can quickly scale up. Where a typical cloud data center occupies about 100,000 square feet, a hyperscale center can be 1 or even 2 million square feet.

Estimates of the number of cloud data centers worldwide range from around 9,000 to nearly 11,000. More are under construction. The International Energy Agency (IEA) projects that data centers’ electricity consumption in 2026 will be double that of 2022—1,000 terawatts, roughly equivalent to Japan’s current total consumption.

However, as an illustration of one problem with the way AI impacts are measured, that IEA estimate includes all data center activity, which extends beyond AI to many aspects of modern life. Running Amazon’s store interface, serving up Apple TV’s videos, storing millions of people’s emails on Gmail, and “mining” Bitcoin are also performed by data centers. (Other IEA reports exclude crypto operations, but still lump all other data-center activity together.)

More Mother Jones reporting on Climate Desk

AN IMPORTANT UPDATE

We’re falling behind our online fundraising goals and we can’t sustain coming up short on donations month after month. Perhaps you’ve heard? It is impossibly hard in the news business right now, with layoffs intensifying and fancy new startups and funding going kaput.

The crisis facing journalism and democracy isn’t going away anytime soon. And neither is Mother Jones, our readers, or our unique way of doing in-depth reporting that exists to bring about change.

Which is exactly why, despite the challenges we face, we just took a big gulp and joined forces with the Center for Investigative Reporting, a team of ace journalists who create the amazing podcast and public radio show Reveal.

If you can part with even just a few bucks, please help us pick up the pace of donations. We simply can’t afford to keep falling behind on our fundraising targets month after month.

Editor-in-Chief Clara Jeffery said it well to our team recently, and that team 100 percent includes readers like you who make it all possible: “This is a year to prove that we can pull off this merger, grow our audiences and impact, attract more funding and keep growing. More broadly, it’s a year when the very future of both journalism and democracy is on the line. We have to go for every important story, every reader/listener/viewer, and leave it all on the field. I’m very proud of all the hard work that’s gotten us to this moment, and confident that we can meet it.”

Let’s do this. If you can right now, please support Mother Jones and investigative journalism with an urgently needed donation today.

payment methods

AN IMPORTANT UPDATE

We’re falling behind our online fundraising goals and we can’t sustain coming up short on donations month after month. Perhaps you’ve heard? It is impossibly hard in the news business right now, with layoffs intensifying and fancy new startups and funding going kaput.

The crisis facing journalism and democracy isn’t going away anytime soon. And neither is Mother Jones, our readers, or our unique way of doing in-depth reporting that exists to bring about change.

Which is exactly why, despite the challenges we face, we just took a big gulp and joined forces with the Center for Investigative Reporting, a team of ace journalists who create the amazing podcast and public radio show Reveal.

If you can part with even just a few bucks, please help us pick up the pace of donations. We simply can’t afford to keep falling behind on our fundraising targets month after month.

Editor-in-Chief Clara Jeffery said it well to our team recently, and that team 100 percent includes readers like you who make it all possible: “This is a year to prove that we can pull off this merger, grow our audiences and impact, attract more funding and keep growing. More broadly, it’s a year when the very future of both journalism and democracy is on the line. We have to go for every important story, every reader/listener/viewer, and leave it all on the field. I’m very proud of all the hard work that’s gotten us to this moment, and confident that we can meet it.”

Let’s do this. If you can right now, please support Mother Jones and investigative journalism with an urgently needed donation today.

payment methods

We Recommend

Latest

Sign up for our free newsletter

Subscribe to the Mother Jones Daily to have our top stories delivered directly to your inbox.

Get our award-winning magazine

Save big on a full year of investigations, ideas, and insights.

Subscribe

Support our journalism

Help Mother Jones' reporters dig deep with a tax-deductible donation.

Donate